Published On: Tue, Sep 27th, 2016

A zap to the right spot might ‘reset’ your brain

Doctors use brain stimulation to treat epilepsy, depression, pain, and other conditions, but it’s not exactly clear how it works or even which areas to target.

New research suggests stimulating a single region of the brain can activate other regions and even alter global brain dynamics.

“The question we asked in this study was how much of the brain is activated by stimulating a single region.”

“We don’t have a good understanding of the effects of brain stimulation,” says Sarah Muldoon, an assistant professor of mathematics at the University at Buffalo. “When a clinician has a patient with a certain disorder, how can they decide which parts of the brain to stimulate? Our study is a step toward better understanding how brain connectivity can better inform these decisions.”

Danielle S. Bassett, associate professor of bioengineering in the University of Pennsylvania, says if you look at the architecture of the brain, “it appears to be a network of interconnected regions that interact with each other in complicated ways. The question we asked in this study was how much of the brain is activated by stimulating a single region.

“We found that some regions have the ability to steer the brain into a variety of states very easily when stimulated, while other regions have less of an effect.”

8 brains and 83 regions

The researchers used a computational model to simulate brain activity in eight individuals whose brain architecture was mapped using data derived from diffusion spectrum imaging, a type of brain image taken by an MRI scanner.

The research, published in in PLOS Computational Biology, examined the impact of stimulating each of 83 regions within each subject’s brain.

While results varied by person, common trends emerged.

Network hubs—areas of the brain that are strongly connected to other parts of the brain via the brain’s white matter—displayed what researchers call a “high functional effect.” Stimulating these regions resulted in the global activation of many brain regions.

This effect was particularly notable in two sub-networks of the brain that are known to contain multiple regional hubs: the subcortical network (which is composed of regions that evolved relatively early on and are critical for emotion processing) and the default mode network (which is composed of regions that evolved later and are critical for self-referential processing when a person is at rest, or not completing any task).

Stimulating regions in the subcortical network culminated in global changes, in which a diversity of areas within a subject’s brain lit up. Stimulating regions in the default mode network also led easily to a plethora of new brain states, though the patterns of activation were constrained by the brain’s underlying architecture—by the white matter links between the nodes of the network and other parts of the brain.

Despite this limitation, the network’s agility supports the idea that the brain at “rest” is well suited for shifting quickly into an array of new states geared toward completing specific tasks.

In contrast to regions within the default mode network and subcortical networks, more weakly connected areas, such as in the sensory and association cortex, had a more limited effect on brain activity when activated.

These patterns suggest that doctors could pursue two classes of therapies when it comes to brain stimulation: a “broad reset” that alters global brain dynamics, or a more targeted approach that focuses on the dynamics of just a few regions.

The Army Research Office, the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the National Institute of Mental Health, the National Institute of Child Health and Human Development, the Office of Naval Research, and the National Science Foundation funded the work.

Source: University at Buffalo

Leave a comment

XHTML: You can use these html tags: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>