Engineering project explores energy conservation through shark research

TheAllINeed.com

(NC&T/UA) The project findings will allow researchers to explore natural solutions for the reduction of skin friction over solid surfaces, which could result in new innovations and applications concerning energy conservation. This research will not only provide a greater understanding of the evolutionary development of sharks, but it will also investigate methods of flow control and drag reduction that can be easily applied to mobile vehicles.

Research has shown the issue of reducing drag over solid surfaces can save thousands of dollars. For example, it is estimated that even a 1 percent reduction in drag can save an airline company up to $200,000 and at least 25,000 gallons of fuel per year per aircraft. The resulting reduction in emissions into the air is equally impressive.

Funded through a National Science Foundation Small Grant, the project is investigating the boundary layer flow over a surface that mimics the skin of a fast-swimming shark. The boundary layer is the area closest to the surface where viscous conditions cause drag–in this instance a shark's skin.

Lang hopes to explain why fast sharks that swim upwards of 60 mph have smaller denticles, or scales, than slower shark species. Evidence suggests that sharks with smaller denticles have the ability to stick out their scales when they swim, allowing them to swim faster and creating a unique surface pattern on the skin that results in various mechanisms of boundary layer control.

"We hope to explain how a shark's skin controls the boundary layer to decrease drag and swim faster," said Lang. "If we can successfully show there is a significant effect, future applications to reduce drag of aircraft and underwater vehicles could be possible."

Dr. Amy Lang works in UA's water tunnel lab researching skin friction over solid surfaces. (Photo: University of Alabama)
Lang's research is being conducted using a water tunnel facility in Hardaway Hall. The water tunnel lab can increase the shark skin geometry by 100 times with a corresponding decrease in flow over the model. This makes the flow over the skin observable, and it allows for the visualization and measurement of flow using modern experimental techniques.




This site is no longer updated.

Click this link to have updated engineering news and articles.

About the Author
©2006 All rights reserved